Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Fundamental Research ; 2023.
Article in English | Scopus | ID: covidwho-2286465

ABSTRACT

The idea of mRNA therapy had been conceived for decades before it came into reality during the Covid-19 pandemic. The mRNA vaccine emerges as a powerful and general tool against new viral infections, largely due to its versatility and rapid development. In addition to prophylactic vaccines, mRNA technology also offers great promise for new applications as a versatile drug modality. However, realizing the conceptual potential faces considerable challenges, such as minimal immune stimulation, high and long-term expression, and efficient delivery to target cells and tissues. Here we review the applications of mRNA-based therapeutics, with emphasis on the innovative design and future challenges/solutions. In addition, we also discuss the next generation of mRNA therapy, including circular mRNA and self-amplifying RNAs. We aim to provide a conceptual overview and outlook on mRNA therapeutics beyond prophylactic vaccines. © 2023

2.
Cells ; 12(2)2023 01 14.
Article in English | MEDLINE | ID: covidwho-2245472

ABSTRACT

The existence of circular RNA (circRNA) research in mainstream science can be attributed to the contemporary synergism of big data and keen attention to detail by several research groups worldwide. Since the re-emergence of these non-canonical RNA transcripts, seminal advances have been made in understanding their biogenesis, interactome, and functions in diverse fields and a myriad of human diseases. However, most research outputs to date have focused on the ability of highly stable circRNAs to interact with, and impact signalling through, microRNAs. This is likely to be the result of seminal papers in the field ascribing a few remarkable circRNAs as "miRNA sponges". However, the stoichiometric ratio between the (often-lowly-expressed) circRNA and their (commonly-more-abundant) target is rarely in favour of a biologically relevant and functional consequence of these interactions. It is time for yet another revolution in circRNA research to uncover functions beyond their documented ability to bind miRNAs. This Special Issue aims to highlight non-canonical functions for this non-canonical family of RNA molecules.


Subject(s)
MicroRNAs , RNA, Circular , Humans , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction
3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Article in English | MEDLINE | ID: covidwho-2232768

ABSTRACT

The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.


Subject(s)
COVID-19 , MicroRNAs , Humans , SARS-CoV-2/metabolism , MicroRNAs/genetics , Brain/metabolism
4.
Front Immunol ; 13: 1091797, 2022.
Article in English | MEDLINE | ID: covidwho-2227844

ABSTRACT

Owing to the success of linear mRNA coronavirus disease 2019 (COVID-19) vaccines, biopharmaceutical companies and research teams worldwide have attempted to develop more stable circular RNA (circRNA) vaccines and have achieved some preliminary results. This review aims to summarize key findings and important progress made in circRNA research, the in vivo metabolism and biological functions of circRNAs, and research progress and production process of circRNA vaccines. Further, considerations regarding the quality control of circRNA vaccines are highlighted herein, and the main challenges and problem-solving strategies in circRNA vaccine development and quality control are outlined to provide a reference for circRNA vaccine-related research.


Subject(s)
Biological Products , COVID-19 , Vaccines , Humans , RNA, Circular/genetics , COVID-19/prevention & control , RNA, Messenger , COVID-19 Vaccines
5.
Vaccines (Basel) ; 11(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2229425

ABSTRACT

BACKGROUND: The adventure of the mRNA vaccine began thirty years ago in the context of influenza. This consisted in encapsulating the mRNA coding for a viral protein in a lipid particle. We show how the mRNA encoding S protein has been modified for that purpose in the context of the anti-SARS-CoV-2 vaccination. RESULTS: by using data coming from genetic and epidemiologic databases, we show the theoretical possibility of fragmentation of this mRNA into small RNA sequences capable of inhibiting important bio-syntheses such as the production of beta-globin. DISCUSSION: we discuss two aspects related to mRNA vaccine: (i) the plausibility of mRNA fragmentation, and (ii) the role of liposomal nanoparticles (LNPs) used in the vaccine and their impact on mRNA biodistribution. CONCLUSION: we insist on the need to develop lipid nanoparticles allowing personalized administration of vaccines and avoiding adverse effects due to mRNA fragmentation and inefficient biodistribution. Hence, we recommend (i) adapting the mRNA of vaccines to the least mutated virus proteins and (ii) personalizing its administration to the categories of chronic patients at risk most likely to suffer from adverse effects.

7.
Theranostics ; 12(14): 6422-6436, 2022.
Article in English | MEDLINE | ID: covidwho-2203053

ABSTRACT

Rationale: Messenger RNA (mRNA) vaccine outperforms other kinds of cancer immunotherapy due to its high response rates, easy preparation, and wide applicability, which is considered as one of the most promising forms of next-generation cancer therapies. However, the inherent instability and insufficient protein expression duration of mRNA limit the efficacy and widespread application of the vaccine. Methods: Here, we first tested the possibility of a novel circular RNA (circRNA) platform for protein expression and compare its duration with linear RNA. Then, we developed a lipid nanoparticle (LNP) system for circRNA delivery in vitro and in vivo. Next, the innate and adaptive immune response of circRNA-LNP complex was evaluated in vivo. The anti-tumor efficacy of circRNA-LNP was further confirmed in three tumor models. Finally, the possibility of combination therapy with circRNA-LNP and adoptive cell transfer therapy was further investigated in a late-stage tumor model. Results: We successfully increased the stability of the RNA vaccine by circularizing the linear RNA molecules to form highly stable circRNA molecules which exhibited durable protein expression ability. By encapsulating the antigen-coding circRNA in LNP enabling in vivo expression, we established a novel circRNA vaccine platform, which was capable of triggering robust innate and adaptive immune activation and showed superior anti-tumor efficacy in multiple mouse tumor models. Conclusions: Overall, our circRNA vaccine platform provides a novel prospect for the development of cancer RNA vaccines in a wide range of hard-to-treat malignancies.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , Animals , Liposomes , Mice , Neoplasms/therapy , RNA/genetics , RNA, Circular/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
8.
Front Genet ; 13: 1085155, 2022.
Article in English | MEDLINE | ID: covidwho-2198792
9.
J Control Release ; 348: 84-94, 2022 08.
Article in English | MEDLINE | ID: covidwho-2103001

ABSTRACT

Circular RNAs (circRNA) is a class of natural (biogenic) or synthetic closed RNA without 5' or 3' ends. Meanwhile, their unique covalently-closed structures of circRNA prevent RNA degradation by exonucleases, thereby empowering them with high pharmaceutical stability and biostability relative to current standard-of-care linear mRNA. Natural circRNA can be non-coding RNAs as well as protein-coding RNA, the latter of which was recently discovered. The physiological functions of biogenic circRNAs, which largely remain elusive, include protein and gene sponges, cell activity modulators, and protein translation. The discovery that the circRNA levels can be correlated with some human diseases empowers circRNA with the potential as a novel type of disease biomarkers and a noncanonical class of therapeutic targets. Recently, synthetic circRNA have been engineered to explore their applications as a novel class of mRNA therapeutics and vaccines. In this review, we will discuss the current understanding of the biogenesis and physiological functions of natural circRNAs, the approaches to circRNA synthesis, and current research in the exploration of endogenous circRNAs as novel therapeutic targets and testing circRNAs as an emerging class of RNA therapeutics and vaccines.


Subject(s)
RNA, Circular , RNA , Humans , RNA/genetics , RNA, Messenger/genetics , Vaccines, Synthetic , mRNA Vaccines
10.
Mol Ther Nucleic Acids ; 28: 623-635, 2022 Jun 14.
Article in English | MEDLINE | ID: covidwho-1804934

ABSTRACT

Natural circular RNAs have been found to sequester microRNAs and suppress their function. We have used this principle as a molecular tool and produced artificial circular RNA sponges in a cell-free system by in vitro transcription and ligation. Formerly, we were able to inhibit hepatitis C virus propagation by applying a circular RNA decoy strategy against microRNA-122, which is essential for the viral life cycle. In another proof-of-principle study, we used circular RNAs to sequester microRNA-21, an oncogenic and pro-proliferative microRNA. This strategy slowed tumor growth in a 3D cell culture model system, as well as in xenograft mice upon systemic delivery. In the wake of the global use of an in vitro transcribed RNA in coronavirus disease 2019 (COVID-19) vaccines, the question arose whether therapeutic circular RNAs trigger cellular antiviral defense mechanisms when delivered systemically. In this study, we present data on the cellular innate immune response as a consequence of liposome-based transfection of the circular RNA sponges we previously used to inhibit microRNA function. We find that circular RNAs produced by the presented methodology do not trigger the antiviral response and do not activate innate immune-signaling pathways.

11.
Cell ; 185(10): 1728-1744.e16, 2022 05 12.
Article in English | MEDLINE | ID: covidwho-1767964

ABSTRACT

As the emerging variants of SARS-CoV-2 continue to drive the worldwide pandemic, there is a constant demand for vaccines that offer more effective and broad-spectrum protection. Here, we report a circular RNA (circRNA) vaccine that elicited potent neutralizing antibodies and T cell responses by expressing the trimeric RBD of the spike protein, providing robust protection against SARS-CoV-2 in both mice and rhesus macaques. Notably, the circRNA vaccine enabled higher and more durable antigen production than the 1mΨ-modified mRNA vaccine and elicited a higher proportion of neutralizing antibodies and distinct Th1-skewed immune responses. Importantly, we found that the circRNARBD-Omicron vaccine induced effective neutralizing antibodies against the Omicron but not the Delta variant. In contrast, the circRNARBD-Delta vaccine protected against both Delta and Omicron or functioned as a booster after two doses of either native- or Delta-specific vaccination, making it a favorable choice against the current variants of concern (VOCs) of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Macaca mulatta , Mice , RNA, Circular/genetics , SARS-CoV-2/genetics , Vaccines, Synthetic/genetics , mRNA Vaccines
12.
J Med Virol ; 94(7): 3203-3222, 2022 07.
Article in English | MEDLINE | ID: covidwho-1750409

ABSTRACT

Circular RNAs (circRNAs) are a newly recognized component of the transcriptome with critical roles in autoimmune diseases and viral pathogenesis. To address the importance of circRNA in RNA viral transcriptome, we systematically identified and characterized circRNAs encoded by the RNA genomes of betacoronaviruses using both bioinformatical and experimental approaches. We predicted 351, 224, and 2764 circRNAs derived from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus, respectively. We experimentally identified 75 potential SARS-CoV-2 circRNAs from RNA samples extracted from SARS-CoV-2-infected Vero E6 cells. A systematic comparison of viral and host circRNA features, including abundance, strand preference, length distribution, circular exon numbers, and breakpoint sequences, demonstrated that coronavirus-derived circRNAs had a spliceosome-independent origin. We further showed that back-splice junctions (BSJs) captured by inverse reverse-transcription polymerase chain reaction have different level of resistance to RNase R. Through northern blotting with a BSJ-spanning probe targeting N gene, we identified three RNase R-resistant bands that represent SARS-CoV-2 circRNAs that are detected cytoplasmic by single-molecule and amplified fluorescence in situ hybridization assays. Lastly, analyses of 169 sequenced BSJs showed that both back-splice and forward-splice junctions were flanked by homologous and reverse complementary sequences, including but not limited to the canonical transcriptional regulatory sequences. Our findings highlight circRNAs as an important component of the coronavirus transcriptome, offer important evaluation of bioinformatic tools in the analysis of circRNAs from an RNA genome, and shed light on the mechanism of discontinuous RNA synthesis.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Humans , In Situ Hybridization, Fluorescence , Middle East Respiratory Syndrome Coronavirus/genetics , RNA, Circular/genetics , SARS-CoV-2/genetics , Spliceosomes/genetics
13.
Infect Genet Evol ; 93: 104923, 2021 09.
Article in English | MEDLINE | ID: covidwho-1230673

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging and highly pathogenic coronavirus that causes coronavirus disease (COVID-19), and might even lead to death. Circular RNAs (circRNAs), a new type of RNAs, are implicated in viral pathogenesis and host immune responses. However, their dynamic expression patterns and functions during SARS-CoV-2 infection remain to be unclear. We herein performed genome-wide dynamic analysis of circRNAs in human lung epithelial cells infected with SARS-CoV-2 at four time points. A total of 6118 circRNAs were identified at different genomic locations, including 5641 known and 477 novel circRNAs. Notably, a total of 42 circRNAs were significantly dysregulated, wherein 17 were up-regulated and 25 were down-regulated following infection at multiple phases. The gene ontology and KEGG enrichment analyses revealed that the parental genes of circRNAs were mainly involved in immune and inflammatory responses. Further, the RNA binding protein (RBP) prediction analysis indicated that the dysregulated circRNAs could regulate mRNA stability, immunity, cell death by binding specific proteins. Additionally, the circRNA-miRNA-gene network analysis showed that circRNAs indirectly regulated gene expression by absorbing their targeted miRNAs. Collectively, these results shed light on the roles of circRNAs in virus-host interactions, facilitating future studies on SARS-CoV-2 infection and pathogenesis.


Subject(s)
COVID-19/genetics , Host-Pathogen Interactions/genetics , Lung/cytology , RNA, Circular/genetics , COVID-19/pathology , Epithelial Cells , Gene Expression Regulation , Gene Ontology , Humans , Lung/virology , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Reproducibility of Results
14.
J Gene Med ; 23(3): e3318, 2021 03.
Article in English | MEDLINE | ID: covidwho-1084739

ABSTRACT

Pulmonary fibrosis is characterized by progressive and irreversible scarring in the lungs with poor prognosis and treatment. It is caused by various factors, including environmental and occupational exposures, and some rheumatic immune diseases. Even the rapid global spread of the COVID-19 pandemic can also cause pulmonary fibrosis with a high probability. Functions attributed to long non-coding RNAs (lncRNAs) make them highly attractive diagnostic and therapeutic targets in fibroproliferative diseases. Therefore, an understanding of the specific mechanisms by which lncRNAs regulate pulmonary fibrotic pathogenesis is urgently needed to identify new possibilities for therapy. In this review, we focus on the molecular mechanisms and implications of lncRNAs targeted protein-coding and non-coding genes during pulmonary fibrogenesis, and systematically analyze the communication of lncRNAs with various types of RNAs, including microRNA, circular RNA and mRNA. Finally, we propose the potential approach of lncRNA-based diagnosis and therapy for pulmonary fibrosis. We hope that understanding these interactions between protein-coding and non-coding genes will contribute to the development of lncRNA-based clinical applications for pulmonary fibrosis.


Subject(s)
Genetic Markers/genetics , Pulmonary Fibrosis/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation , Genetic Therapy/methods , Humans , MicroRNAs/genetics , Proteins/genetics , Pulmonary Fibrosis/diagnosis , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/therapy , RNA, Circular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL